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Two front instabilities in a reaction-diffusion system are shown to lead to the formation of complex
patterns. The first is an instability to transverse modulations that drives the formation of labyrinthine
patterns. The second is a nonequilibrium Ising—Bloch (NIB) bifurcation that renders a stationary
planar front unstable and gives rise to a pair of counterpropagating fronts. Near the NIB bifurcation

the relation of the front velocity to curvature is highly nonlinear and transitions between
Pmmfﬁrnrnhaomma fronts become feasible, Nonuniformly curved fronts may lmdercn local front

transxtlons that nucleate spiral-vortex paits. These nucleatlon events provide the mgredlent needed
to initiate spot splitting and spiral turbulence. Similar spatiotemporal processes have been observed

recenily in the ferrocyanide—iodate—sulfite reaction.

I. INTRODUCTION

Labyrinthine patterns spot replication, and spiral wave
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reaction-diffusion systems. Labyrinthine, or lamellar, pat-
terns have been observed in a variety of gradient systems!
including garnet layers,” ferrofiuids,® and block copoly-
mers.** Recently they were found in the bistable FIS
(ferrocyanide—iodate—sulfite) reaction,® a nongradient sys-
tem that also exhibits spiral turbulence and spot replication.”
Spot replication (or spot splitting), where circularly shaped
regions repeatedly break into two or more similar regions,
was found both in numerical simulations of a reaction-
diffusion model® and in laboratory experime‘mts.""9

Much of this phenomenology can be understood in terms
of two key front instabilities: an instability to transverse per-
turbations reminiscent of the Mullins—Sekerka instability in

olidification fronts. 10 and = loneitudinal instability that we
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call a nonequilibrium Ising—Bloch (NIB) front bifur-
cation.!"!? At an NIB bifurcation, a stationary “Ising” front
bifurcates to a pair of “Bloch” fronts propagating in opposite
directions. Ising and Bloch fronts in this context were first
introduced by Coullet et al.'! as nonequilibrium analogs of
Ising and Bloch walls in ferromagnets. A Bloch front repre-
sents a solution where the phase angle between the two sca-
lar fields (# and v, see below) rotates smoothly through an
angle 7 across the front. An Ising front has a constant phase
except at the core where there is a jump by .

The coexistence of counterpropagating Bloch fronts is a
nongradient effect that lies at the heart of the complex spa-
tiotemporal processes. Beyond the transverse instability and
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when small distrubances on planar Ising fronts grow and filt
the system through fingering and tip splitting. In the vicinity

of the NIB bifurcation intrinsic perturbations, such as curva- .

“ture, may drive dynamic transitions between the two coun-
terpropagating fronts and lead to spot splitting and spiral
breakup.'?
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To study these instabilities we consider a nongradient
doubly diffusive reaction-diffusion model for two scalar
fields & and v:

u=u—u—v+Vvu, (1.1a)

v,=elu—a,v—ay)+6Viy. (1.1b)
This type of model has been studied in the context of nerve
conduction (with 8=0) and chemical reactions,'*" semicon-
ductor resonators,'® and many other systems.!” For e>1 it
reduces to a gradient system like those studied in the context
of phase separating systems, 519

Equations (1.1) contain four parameters: €, the ratio of
the time scales associated with the two fields, &, the ratio of
the diffusion constants, and two parameters, a,>0 and a,,
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states. These states are found by the intersections of the
nullclines v =u—u> and v=(u—ag)/a,. For this study we
always choose a; and a, so there are three intersections,
each on a different branch of the cubic nullcline. The inter-
sections on the outer branches represent stable solutions
which we will call {u,,v_.) for the positive branch “wp”
state, and (u_,v_) for the negative branch “down” state.
When a,=0, Bgs. (1.1) have an odd symmetry and
(wp,v)=—(u..,v_)

We focus in this paper on the regime /<1 where a
singular perturbation analysis of (1.1) can be performed. In
Sec. II we review the derivation of the Ising-Bloch front
bifurcation line in the e— & parameter plane.®*! In Sec. III
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to transverse perturbations. Implications of the two instabili-
ties on the formation of labyrinthine patterns, spot splitting,
and spiral turbulence are studied in Sec. IV. Section V con-
tains a description of the numerical methods used in the
simulations and Sec. VI concludes by connecting this work
to a few others.
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Il. THE NIB BIFURCATION

In addition to the two stable homogeneous solutions,
Eqs. (1.1) also admit front solutions connecting regions of
(w, vy} and (u_ v ). The stability and type of these fronts
depends upon the size of both ¢ and &. Decreasing from large
€, a single Ising front solution bifurcates to form two coun-
terpropagating Bloch fronts.

To study this bifurcation we consider one-dimensional
front solutions propagating at constant speeds and connect-
ing the up state at —<o to the down state at +oo, These solu-
tions satis{y

ptgg+eSputu—u’—v=0, (2.1a)

Vet cvgtu—au—ay=0, (2.1b)
where we rescaled space and time according to

z= \,/;_J,x, r=¢€t, p=¢/d<1, (2.2)

and introduced the traveling frame coordinate {=z—cT.
Front solutions of (2.1) can be separated into two parts per-
taining to distinct regions: outer regions, away from the
front, where both u# and » vary on a scale of (1}, and an
inner region, including the front, where u varies much faster
than v. In the outer regions the derivative terms in (2.1a) can
be neglected leading to the solutions u=u_.(v) of the re-
maining cubic relation 4 —u®—v=0. Using these forms in
(2.1b), and setting the front position, =0, at the origin,
=0, we obtain closed equations for v,

vytevtun(v)-aw—ag=0, (2.3)

with u=u,(v) when {<0 and u=u_({v) when {>0. To
simplify, we choose a, large enough so that [v|<€1 and the
branches 1. (v) can be approximated by the linear forms
u.(v)=%x1—vp/2. We then obtain the following linear
boundary value problems for the two outer regions:

{<0: vg-i-cvf-qzv +q*v, =0,

v(®)=vys, v(—®)=v,, (2.4a)
{>0: v§§+cv§—q2v+qzv“=0,
v(0)=vy, v(®)=v_, (2.4b)
where
*l—a
S, gP=a;+172, (2.5)

V== r12 ¢

and v, is the level of v at the front position. The solutions are

v()=(vp—vi)e ¥ +o,, <0, (2.6a)

v()=(v;—v)e¥+u_, >0, (2.6b)
with

oy 2=—c/25(cH A+ (2.7)

By construction, the two outer solutions for v are continuous
at {=0. Matching the derivatives of v at {=0 gives a relation
between ¢, the speed of the front, and v e the value of the v
field at the front position,

N [ ag
b= 2q2(62/4+q2)”2 qz-

2.8)

A second relation between v, and ¢ is obtained by solv-
ing the inner problem. In the front region u varies on a scale
of (9(\/;_1,) but variations of v are still on a scale of @(1).
Stretching the traveling-frame coordinate according to y
=7/ we obtain from (2.1)

(2.9a)

Uyt \/Ecvx+ﬁ(u—a1v—ag)=(), (2.9b)

where 7#=e8. Setting #=0 in (2.9b) gives the equation
Uyy=0, and we choose the solution v= const. Fixing the
constant, v =vy, in the equation for u gives a nonlinear ei-
genvalue problem for ¢,

Uy ﬂcux+u—u3—v=0,

(2.10a)
(2.10b)

Uyt mou,t flu,v,)=0,
u(Foo)=u.(uvy),

with f(u,vp)=u— u - v;. The cubic function, f, can be re-
written as

fluvp)=—[u—u_(vp)]lu—uglvp)fu—ui(vp],
(2.11

where u__(vf)= -1 _'Uffz, u0=vf, and u+(vf)= 1 _Uf/.?.,
are the linearized forms of the cubic isocline near the three
solutions u= —1, 0, 1, respectively. The speed of the front
solution of (2.10) is
1 -3

nc=$(u+"2u0+u_)=$vf. (2.12)

Combining the two equations (2.8) and (2.12) we find an
implicit relation for the front speed, ¢, in terms of the equa-
tion parameters 7, ¢4, and ag,

\/—2_ c 4y

N2 = 42 2.13
3 Tt 213)

This equation was derived using the coordinate scaling (2.2).
The relation for the original variables x and ¢ is found by
replacing c—¢/7 in (2.13):

3¢
C=
\/qu\/c2+41;2q2

where c..=3a0/V2q>.

For the symmetric case, 24=0 and consequently ¢.,=0.
Equation (2.14) then has the sclution ¢=0 representing a
stationary front. This solution exists for all # values. When
y<n.=3/2y2¢°> two additional solutions, c=%*2g
X \f'qz— 7* appear, representing counterpropagating fronts.
Figure 1(a) displays the corresponding pitchfork bifurcation.
The structures of the front solutions below and above the
bifurcation are similar to those found in Ising—Bloch wall
transitions.” For this reason we follow the terminology sug-
gested in Ref. 11 and identify the stationary and the propa-
gating fronts as nonequilibrium analogs of Ising and Bloch
walls, respectively.

For the nonsymmetric case we solved (2,14} numeri-
cally. A plot of the solutions, c=c(7), in the (¢, ) plane

+ca, (214)
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FIG. 1. The NIB front bifurcation in the (c,#) plane. The solid (broken)
linc represents a stable (unstable) branch of front solutions. {a) The sym-
metric case, a,=0. (b) The nonsymmetric case, ay=—0.1.

yields the saddle-node bifurcation diagram shown in Fig.
1(b). The bifurcation point, =17, , occurs for smaller critical
77 value than the symmetric case and the front that exists for
77>, is not stationary. We still refer to the two stable coun-
terpropagating fronts beyond the bifurcation as Bloch fronts
and to the single front that exists for 7>, as an Ising front.

Since 77=e8 the bifurcation point, %=1, , defines a line
in the &—§8 plane, 8=3.(€). For the symmetric case
op(€)=n; 2/e=9/8¢%. For the nonsymmetric case the bi-
furcation line was computed numerically. Figures 2(a) and
2(b) show the bifurcation lines for the symmetric and non-
symmetric cases, respectively. These results for the bifurca-

tion line are not valid for 6~¢%{e) and smaller. In that regime

a different approach can be used.?

ill. TRANSVERSE INSTABILITY -

For & sufficiently large, planar front solutions may be-
come unstable to transverse perturbations, =% To study the
transverse instabilities of the various front solutions we
change from the fixed coordinate system to a coordinate sys-
tem moving with the front. Let X=(X,Y) be the position
vector of the front represented by the =0 contour line. The
moving coordinate frame (r,s) is defined by the relation

x=(x,y)=X(s,t) +ri(s,1), (3.1)
with the coordinate s parametrizing the direction along the

front and #=(Y X—X,§)/ VX5+ Y? the unit vector normal to
the front {the subscript s denotes partial derivatives with re-

(a)

(0}

FIG. 2. The NIB bifurcation and the transverse instability lines in the e—§&
parameter planc for (a) the symmetric case (2,=0), and (b) the nonsymmet-
ric case (a=—0.1). The front bifurcation, &= &x(&), is indicated by the thick
line. The transversc instabilitics arc indicated by the thin lines, 6=8;(¢€) for
Ising fronts, and =85 (€} for Bloch fronts.

spect to ). We assume the front radius of curvature is much
larger than I,=+/ /€, the scale of v variations across the
front. We also assume the curvature varies slowly both atong
the front direction and in time, With these assumptions, Egs.
(1.1} assume the form

U, +(c,+ K, ru~ul—v=0, (3.2a)
(3.2b)

where x(s,6)=X,Y,,—Y X, is the front curvature, and
c,(s,t)=X, I is the front normal velocity.

dv,, +(c,+8ryv,+te(u—av—ag)=0,

Multiplying Eg. (3.2b) by the factor A(s,t)
=(c,+ x)/(c,+ Ox) gives

Uyt (cpt u,Hu—ut—v=0, (3.3a)

bv,,+(c,+K)v,+ Eu—av-ag)=0, (3.3b)

with é=eA and 5=8A. This system is exactly of the same
form as Eqs. (1.1) for a planar («=0) front propagating at
constant speed, ¢, +«, in the normal direction, I, except the
original parameters € and & are replaced by effective param-
eters & and 8.%° The front bifurcation formula derived in Sec.
II can now be applied to show the effects of curvature on the

CHAQS, val, 4, No. 3, 1994
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front velocity. Using Eq. (2.14} with ¢ replaced by ¢, + « and
7 by #=nA we obtain an implicit relation for the normal
front velocity in terms of its curvature,

3(c,+ 8k) N
2qlle, o)+ A
Equation (3.4) can be used to study the stability of the

planar fronts to transverse perturbations. We look for a linear
velocity curvature relation,

c, K= (3.4)

¢,=co—dk+G(k?), (3.5)

valid for small curvature. Here, ¢4(#} is the speed of a planar
front satisfying (2.14). A positive (negative) sign of the co-
efficient d implies stability (instability) to transverse pertur-
bations. Inserting {3.5} into the expression for the front
speed, keeping only linear terms, we find,

1 1
d=—+(1——)§,
44 24

Co—Ca
a=1--" (

€o

24 ) (3.6)

1“‘7 (CO““Cw)Z

For each planar solution branch, cy=cy{ 7}, the condition
d=10 defines a line in the e— & plane where the correspond-
ing planar front branch undergoes a transverse instability.
Setting d=0 for the symmetric case {a,=0), the [sing and
Bloch fronts become unstable to transverse modulations
when &>8(=%¢% and 5>85(e)=3/2v2¢°Je, respec-
tively. The trangverse instability boundary and the front bi-
furcation line, 85(€)=9/8¢%¢, are shown in Fig. 2(a). Figure
2(b) shows the transverse instability boundaries and the front
bifurcation line for a typical nonsymmetric case, Note that
the lines corresponding to the two Bloch fronts, denoted by
85, are not degenerate as in the symmetric case.

iV. PATTERNS IN TWO DIMENSIONS

The two instabilities presented above provide a guide to
exploring pattern types in the e— & plane. Deep in the Ising
regime there exists only one type of front and no traveling
pulses or waves are expected.”’ Instead, stationary patterns
may develop: ordered stripes below the transverse instability,
and labyrinthine patterns above it. Far into the Bloch regime,
where there is coexistence of counterpropagating fronts, trav-
eling stripes and spiral waves appear. They are smooth below
the transverse instability and develop ripples above it. The
transition between these two regimes is not sharp. There ex-
ists an intermediate region, including the NIB bifurcation
line, where complex spatiotemporal patterns such as replicat-
ing spots and spiral turbulence are found.

The key to understanding these complex behaviors is the
highly nonlinear form of the velocity-curvature relation near
the NIB bifurcation. Figure 3 shows typical solution curves
of Eq. (3.4). The multivalued velocity-curvature relation near
the NIB bifurcation [Fig. 3(b)] unfolds to a single valued
relation far in the Ising regime [Fig. 3(a)], or folds even
further to form three effectively disconnected linear branches
deep in the Bloch regime [Fig. 3(c})]. The significance of the
multivalued relation near the bifurcation is that small curva-
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FIG. 3. Front velocity, ¢, vs curvature, . (a) Deep in the Ising regime, (b)
Near the NIB bifurcation. (¢) Deep in the Bloch regime. In the Bloch regime
near the NIB bifurcation: (d) §>1, (¢) =1, (f) d<1.

ture variations may drive a given branch past its end point
and induce a transition to a different branch.*® Such front
transitions reverse the direction of front propagation. When
occurring locally they nucleate spiral-vortex pairs and may
lead to spot splitting and spiral turbulence.

Most studies of traveling waves in excitable and bistable
media®>*7 have assumed a linear velocity-curvature rela-
tion, ¢,=cy—d«. The linear relation is valid deep into the
Bloch regime (7<%,) and not near the NIB bifurcation (see
also Ref. 28) with the exception of the special case &=1.
There, d=1 and the velocity is simply ¢,=cy—¥x, where
co() satisfies (2.14). Figure 3(e) shows a typical velocity-
curvature relation in the Bloch regime when §=1. The three

"linear branches correspond to the three solutions of Eg.

(2.14). Approaching the NIB bifurcation when =1, the two
upper branches coalesce leaving only the single lower branch
in the Ising regime. Near the NIB bifurcation for 6>1 the
upper branch terminates at negative curvature values [Fig.
3(d)] while for §<1 it terminates at positive curvature [Fig.

3(f)].
A. Labyrinthine patterns

Far into the Ising regime and beyond the transverse in-
stability line, 8>8(e)= 3¢%¢, front shapes meander, grow
fingers, and split at the tips. This behavior can be understood
using the velocity-curvature relation deep in the Ising re-
gime, as depicted in Fig. 4(c). The positive slope of this
relation over a wide range of curvature implies that front-
pottions with higher curvature propagate faster, forming fin-
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T 3 T T T T

0.0 0.02 c 0.04 0.06

FIG. 4. A map of the velocity vs curvature relation in the €— & plane. The
thick line represents the front bifurcation for @y=—0.1 and the inscts display
¢ vs « for the point indicated by the solid circle, The axis scales for the
insets arc the same as in Fig. 3.

gers. It also implies that the transverse instability remains
effective even at the highly curved fingertips. This leads to
tip splitting.

Figure 5 shows the evolution of a stripe domain in the
Ising regime above the transverse instabifity boundary and

FIG. 5. The evolution of an initially perturbed stationary stripe in the Ising
regime above the transverse instability line [sce Fig. 4(c)). The dark and
light regions correspond to the up and down states, respectively. The frames
(a)—(f) pertain to times ¢=100, 525, 1100, 1900, 2675, 5000. The computa-
tional parameters are a,=2.0, ap=—0.1, ¢=0.05, §=4.0 on a domain of

0=x=400, 0=y <400,

corresponding to the velocity-curvature relation in Fig. 4{(c).
The initial stripe is perturbed transversely along the middle
part. The perturbation grows, forms a meandering stripe, and
then undergoes fingering and tip splitting. A final stationary
labyrinth results when the pattern fills the entire domain.

Notice the final pattern in Fig. 5(f) is connected since
there were no domain fusion events during the evolution.
Domain fusion is avoided by the repulsive front interactions
{(due to the diffusive damping of v in the region between
approaching fronts?®). Closer to the front bifurcation the
front speeds are higher [see Fig. 1(b)] and the repulsive in-
teractions may not be strong enough to prevent fusion. As a
result the eventual stationary pattern may contain discon-
nected domains,

Similar labyrinthine patterns have been observed in the
bistable FIS reaction.’ Our interpretation is that these pat-
terns occur in the Ising regime where the single front struc-
ture corresponds to a high pH state invading a low pH state.

B. Single spot dynamics

Closer to the NIB bifurcation the nonlinearity of the
velocity-curvature relation becomes important. Consider an
up state disk expanding radially outward. Depending on the
system parameters several scenarios for evolution are pos-
sible. Deep enough into the Ising regime, where the velocity-
curvature relation is still single valued [sece Fig. 4(a)}, a sta-
tionary disk solution exists. The disk has radius 1/xy, where
¢,(#y)=0, and is stable to uniform expansions and contrac-
tions because the velocity-curvature relation has positive
slope at ¢,=0 (it might be unstable, however, to transverse
perturbations™).

Still closer to the front bifurcation (but in the Ising re-
gime) the velocity-curvature relation becomes multivalued
and the slope at ¢, =0 negative as iltustrated in Fig. 4(b). The
stationary disk is no longer stable to expansions and contrac-
tions and a breathing disk solution appears.®* To understand
this breathing motion, note first that the boundary of an ex-
panding disk corresponds to a front lying on the upper
branch in Fig. 4(b). As the disk expands, the front curvature
decreases. When the curvature falls below the value where
the upper branch terminates a transition to the lower branch
takes place. The disk stops expanding and starts contracting.
The curvature increases until the end point of the lower

“branch is reached and a transition back to the upper branch

oceurs. As a result the disk stops contracting and begins ex-
panding again. These oscillations are similar to those found
in one-dimensional domains®>*?* with front interactions
playing the role of curvature in inducing front transitions.'

" To verify these expectations we studied numerically Egs.
(1.1) in polar coordinates assuming circularly symmetric
front solutions (to avoid transverse instabilities). Such solu-

tions satisfy
{4.1a)
(4.1b)

They represent circular fronts with curvatures «(2}=1/ry(t),
where 7o(¢) solves u(ry,)=0. Figures 6(a) and 6(b) show
the curvatures of up state disks as functions of time for pa-

w=u,+(1/ru,+u—u*-v,

v,=6v,,+(8/r)v,+e(u—av—ay).

CHAQS, Vol. 4, No. 3, 1994
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FIG. 6. Curvature, &, vs time for a disk shaped domain. (a) Far in the {sing
regime [Fig. 4(a)] a stationary disk pattern is reached. Computational pa-
rameters: 4, =2.0, ag=—0.1, ¢=0.028, §=4.0. (b) Near the NIB bifurcation
[Fig. 4(b)] oscillations sct in. Computational parameters: &, =2.0, ag=—0.1,
=001, §=6.0.

rameters pertaining to Figs. 4(a) and 4(b), respectively. A
single valued (multivalued) velocity-curvature relation leads
to a stationary (oscillatory) asymptotic state,

In fully two-dimensional systems oscillating disks might

be unstable to noncircularly symmetric perturbations. Con-.

sider an expanding disk perturbed to an oval shaped domain
as shown in Fig. 7(a). The parameters chosen pertain to a
velocity-curvature relation similar to the one in Fig. 4(b). As
the domain expands, the flatter portions of its boundary are
the first to reach the end of the upper branch and undergo
front transitions. These portions then propagate toward one
another, annihilate, and split the domain as shown in Figs.
7(b) and 7{c). The crossing points of the u=0 and v=0
contour lines indicate the cores of spiral vortices. Note that
the splitting process involves the creation and the subsequent
annihilation of two spiral-vortex pairs. A successive splitting
is shown in Fig. 7(d). The asymptotic state in this case is a
disordered stationary pattern with many disconnected do-
mains. Remnants of the unstable breathing motion are often
seen when the split spots first contract, then approach a mini-
mum size and start expanding. Both spot splitting and the

FIG. 7. Domain splitting of an oval shaped domain. The shaded (light)
region corresponds to the up {down) statc and the thick {thin) linc represents
the contour of the =0 (v =0 ) field. Frames (a)—(d) pertain to times ¢==80,
240,280,340. Local front transitions occur at the flatter portions of the front.
They are accompanied by nucleation of vortex pairs, and followed by do-
main splitting. Computational parameters: a;=2.0, a;=—0.15, ¢=0.014,
§=3.5.

persistence of small spots have been observed recently by
Lee et al. in the FIS reaction.”®

C. Spiral turbulence

Further approach to the NIB bifurcation results in disor-
dered dynamic patterns where spiral vortices nucleate and
annihilate repeatedly. We refer to such a state as spiral tur-
bulence. The nucleation of spiral-vortex pairs results from
local front transitions, very much like in spot splitting except
the mechanisms that drive the transitions are different and
depend on the system parameters. For & sufficiently large,
the transverse instability plays a dominant role in inducing
such transitions.’® Figures 8 and 9 show spiral turbulence for
smalier & values. In this parameter regime front interactions
are the major driving force. Figures 4(g) and 4(f) show the
corresponding velocity-curvature relations. In both figures
the upper branches terminate at positive curvature values.
Processes reducing the curvature of fronts on these branches
past the end points cause transitions to the lower front
branches. As we have seen in the previous section, single
noncircularly symmetric domains may undergo such transi-
tions and split. In the presence of nearby domains, however,
repulsive front interactions accelerate domain splitting by
flattening out approaching curved fronts. Frames (d), (¢), (f)
of Figs. 8 and 9 show local front transitions and splitting
driven by front interactions (see the regions indicated by the
arrows). These processes are strikingly similar to those ob-
served in the FIS reaction.’ Front interactions may also cause
spiral-vortex nucleation and splitting by directly inducing
front transitions. Reflection of one-dimensional fronts pro-
vides an example of front interactions leading to front
transitions.?’ The spiral-vortex nucleations in Figs. 8 and 9
are likely to result from both mechanisms.
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FIG. 8. Spiral breakup for the velocity-curvature relation of Fig. 4(g). The
frames (a)-(f) represent the solution at times ¢=:60,640,1540,3760,3780,
3800, respectively. The computational paramctess are a, =2.0, a,=—0.10,
€=0.0375, 6=1.2 on a domain of 0=x=400, 0<y=<400. For a more de-
tailed description see the text.

The patterns in Fig. 8 differ from those in Fig. 9 in a few
respects. The initial conditions in both simulations are the
same but the subsequent spiral breakup is different. In Fig. 8
most of the spiral wave disappears as the weakly curved
front away from the core undergoes a front transition. In Fig.
9 the weakly curved part of the spiral survives longer until
front interactions or interactions with the boundaries come
into play. This is because the upper branch of the velocity-
curvatute relation pertaining to Fig. 9 terminates at a lower
curvature value than that of Fig. 8 {see Figs. 4(f) and 4(g)].
Another difference is the prevalence of more spots in the
patterns of Fig. 8. This is partly because domain fusions are
avoided in Fig. 8 but occasionally take place in Fig. 9 (closer
to the NIB bifurcation, front speeds are higher and domain

fusions are more likely).

V. NUMERICAL METHODS

Numerical simulations were performed by integrating
the system (1.1) with Neumann boundary conditions. The
spatial derivatives were computed by fourth-order finite dif-
ference approximations on a uniform 400X400 grid over a
domain of 0=x=400, 0<<y=400. For typical equation pa-
rameters the 400X400 resolution resuited in about 6 points
across the narrow front region in u. Doubling the resolution
slightly changed the location of the front bifurcation but did

FIG. 9. Spiral breakup for the velocity-curvature relation of Fig. 4(f). The
frames (a)—(f) represent the solution at times ¢ =80, 620, 900, 1890, 1900,
1910, respectively. The computational parameters are the same as Fig. 8
with €=0.035. For a morc detailed description sce the text.

not affect the qualitative results. For the turbulent patterns
(Figs. 8 and 9) the time integration was performed with a
second-order Adams method. In the simulations for the
labyrinthine patterns and spot dynamics (Figs. 5 and 7) the
explicit Adams method was replaced with an implicit
second-order formula for efficiency of integration on long
time scales.”® For the circularly symmetric simulations a
one-dimensional version of the fourth-order finite difference
discretization was used with a variable order, variable step
size, implicit time integration scheme.

VI. CONCLUSION

The Labyrinthine patterns found in the Ising regime have
also been studied by Petrich and Goldstein®? using a nonlocal
interface model. The model was derived for parameters far
info the Ising regime where the reaction-diffusion equations
reduce to a gradient system. We expect the qualitative pre-
dictions of this model to hold closer to the NIB bifurcation
under twe conditions: domain fusion, which changes the
topology of the front curve, does not take place, and nongra-
dient effects, such as front transitions, do not appear.

Spot splitting has been studied numerically by Pearson
and analytically, in one space dimension, by Reynolds
et al.** No one-dimensional analog of spot splitting exists in
the present model, at least for the parameter regime where
splitting in two dimensions has been observed. The splitting
studied here is a purely two-dimensional effect where curva-
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ture and front interactions play key roles. We believe these
factors also have important roles in the two-dimensional spot
splitting simulations by Pearson.

The breakup of spiral waves studied here results from
local front transitions that become feasible near the NIB bi-
furcation. The transitions can be induced-by quite general
perturbations, either extrinsic or intrinsic. In Ref. 13 we stud-
ied front transitions caused by external advective fields. The
transverse instability also can lead to local front transitions
by creating negatively curved front portions % Here the im-
portant factors are front interactions that act either directly,
or indirectly {by flattening curved fronts). It would be inter-
esting to investigate the relevance of the above mechanism to
recent studies of spiral turbulence in surface reactions®* and
in cardiac tissue models.***

Many of the observations made here have also been
found in the FIS reaction. These include labyrinthine
patterns,® spot splitting,” and front transitions induced by
front interactions.” Further comparative investigation should
include experimental testing for the existence of an NIB bi-

furcation, and examination of the experimental observations
in relation to the location of the bifurcation.

We expect similar complex spatiotemporal patterns to be
found in other systems exhibiting NIB bifurcations, Periodi-
cally forced oscillatory systems!' and liquid crystals
subjected to rotating magnetic fields might be good
candidates.*0*!
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